Related flavonoids cause cooperative inhibition of the sarcoplasmic reticulum Ca²⁺ ATPase by multimode mechanisms.

نویسندگان

  • Oluseye A Ogunbayo
  • Francesco Michelangeli
چکیده

Flavonoids are group of plant-derived hydroxylated polycyclic molecules found in fruit and vegetables. They are known to bio-accumulate within humans and are considered to have beneficial health effects, including cancer chemoprotection. One mechanism proposed to explain this is that they are able to induce apoptosis in cancer cells by inhibiting a variety of kinases and also the Ca²⁺ ATPase. An investigation was undertaken with respect to the mechanism of inhibition for three flavonoids: quercetin, galangin and 3,6 dihydroxyflavone (3,6-DHF). Each inhibited the Ca²⁺ ATPase with K(i) values of 8.7, 10.3 and 5.4 μM, respectively, showing cooperative inhibition with n ~ 2. Given their similar structures, the flavonoids showed several differences in their mechanisms of inhibition. All three flavonoids stabilized the ATPase in the E₁ conformation and reduced [³²P]-ATP binding. However, both galangin and 3,6-DHF increased the affinity of Ca²⁺ for the ATPase by decreasing the Ca²⁺-dissociation rate constant, whereas quercetin had little effect. Ca²⁺-induced changes in tryptophan fluorescence levels were reduced in the presence of 3,6-DHF and galangin (but not with quercetin), indicating that Ca²⁺-associated changes within the transmembrane helices are altered. Both galangin and quercetin reduced the rates of ATP-dependent phosphorylation and dephosphorylation, whereas 3,6-DHF did not. Modelling studies suggest that flavonoids could potentially bind to two sites: one directly where nucleotides bind within ATP binding site and the other at a site close by. We hypothesize that interactions of these two neighbouring sites may account for both the cooperative inhibition and the multimode mechanisms of action seen with related flavonoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca-ATPase in Cardiac Sarcoplasmic Reticulum

We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the Ca-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by timeresolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected ...

متن کامل

Hypochlorous acid inhibits Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum.

Hypochlorous acid (HOCl) is produced by polymorphonuclear leukocytes that migrate and adhere to endothelial cells as part of the inflammatory response to tissue injury. HOCl is an extremely toxic oxidant that can react with a variety of cellular components, and concentrations reaching 200 microM have been reported in some tissues. In this study, we show that HOCl interacts with the skeletal sar...

متن کامل

The inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by macrocyclic lactones and cyclosporin A.

The pharmacology of macrocyclic lactones is varied, with many beneficial effects in treating disease processes. FK-506, rapamycin and ascomycin have been utilized as immunosuppressant agents. Ivermectin is typically used to treat parasitic worm infections in mammals. Another immunosuppressant, cyclosporin A, is a cyclic oligotide that has similar immunosuppressant properties to those exerted by...

متن کامل

Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum.

We have studied the effects of cyclopiazonic acid (CPA) and halothane on the enzymatic activity, oligomeric state, and conformational equilibrium of the Ca-ATPase in skeletal muscle sarcoplasmic reticulum (SR). CPA is a potent inhibitor of Ca-ATPase activity, and this inhibition is competitive with respect to ATP concentration. Time-resolved phosphorescence anisotropy was used to detect the fra...

متن کامل

Inhibitory effect of lidocaine on the sarcoplasmic reticulum Ca2+-dependent atpase from temporalis muscle.

Myotoxic effects of local anesthetics on skeletal musclefibers involve the inhibition ofsarcoplasmic reticulum Ca2+ -dependent ATPase activity and Ca2 transport. Lidocaine is a local anesthetic frequently used to relieve the symptoms of trigeminal neuralgia. The aim of this work was to test the inhibitory and/or stimulatory effect of lidocaine on sarcoplasmic reticulum Ca2+ -dependent ATPase is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 281 3  شماره 

صفحات  -

تاریخ انتشار 2014